1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+...,1/2+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+...;后一个级数每一项对应的分数都小于调和级数中的每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调和级数也是发散的。
什么时候开始极限不存在
极限不存在有三种情况,分别是极限为无穷,很好理解,明显与极限存在定义相违;左右极限不相等,例如分段函数;没有确定的函数值,例如lim(sinx)从0到无穷。
将数列un的项u1,u2,…,un,依次用加号连接起来的函数,是数项级数的简称。如u1+u2+…+un+…,简写为∑un,un称为级数的通项,记Sn=∑un称之为级数的部分和。如果当n→∞时 ,数列Sn有极限S,则说级数收敛,并以S为其和,记为∑un=S;否则就说级数发散。
级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。
级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。
实质性程序包括哪些
实质性程序包括实质性分析程序和细节测试。实质性分析程序是指先考虑科目的金额与哪些因素有关,这些因素间怎样联系,进而对科目的金额做出一个预测,把这个期望值和客户的账面数比较,通过发现和询问差异原因,来判断科目的金额是否存在错报。