角动量是矢量,用L表示,它跟物体的动量p=mv和矢径r之间的关系:L=r×p印刷体用黑体字,手写应该在各个字母上加箭头以表示矢量,其中"×"表示矢量积,符合右手螺旋法则角动量是物体对某一中心或转轴而言的。
静止的物体有动能吗
动能的定义:E=(1/2)m*v的平方静止的物体,v=0所以没有动能。另外,确实是运动的物体才具有动能。当然我们说运动和静止都是,相对的,因此最好指明参考系,相对于什么具有动能。
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。
一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
极值点一定是驻点吗
如果极值点是可导的点,那么一阶导数一定为0,即可导的极值点一定是驻点。但是极值点完可以是不可导的点,比方说y=|x|,这个函数,在x=0点处,函数从从单调递减变成单调递增,是极小值点,但是这个函数在x=0点处不可导,左右导数不相等,不是驻点。所以两者的区别是驻钚定是极值点,极值点也不一定是驻点。