求导过程如下:y=e^(-x)可以看做y=e^t和t=-x的复合,根据复合函数求导的法则,先将y对t求导得e^t,然后t对x求导得-1,两个导数相乘,并将结果中t换成-x,从而(e^-x)'=e^(-x)*(-1)=-e^(-x)。
一、导数的含义
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
二、导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
极值点一定是驻点吗
如果极值点是可导的点,那么一阶导数一定为0,即可导的极值点一定是驻点。但是极值点完可以是不可导的点,比方说y=|x|,这个函数,在x=0点处,函数从从单调递减变成单调递增,是极小值点,但是这个函数在x=0点处不可导,左右导数不相等,不是驻点。所以两者的区别是驻钚定是极值点,极值点也不一定是驻点。
4、如果有复合函数,则用链式法则求导。
三、常用的导数公式
y=c(c为常数),y'=0
y=x^n,y'=nx^(n-1)
y=a^x,y'=lna*a^x;y=e^x,y'=e^x
y=logax(a为底数,x为真数);y'=1/(x*lna);y=lnx,y'=1/x
y=sinxy'=cosx
y=cosxy'=-sinx
y=tanxy'=1/(cos(x))^2
角动量Jw是什么
角动量是矢量,用L表示,它跟物体的动量p=mv和矢径r之间的关系:L=r×p 印刷体用黑体字,手写应该在各个字母上加箭头以表示矢量,其中