当x趋于正无穷时,虽然1/x在不断减少,但作为指数的x却在不断增大,指数x增大的这部分弥补并逐渐超越了1/x减少的部分,所以整个极限式是在不断增大的,并且无限趋近于e。
一、基本定义
设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。无穷大记作∞,不可与很大的数混为一谈。
cos0为什么等于1
在平面直角坐标中以原点为圆心单位1为半径做一个单位圆。任取圆上一点,往X,Y轴分别作垂线。然后你就会惊奇地发现,当角的终边与X正半轴夹角为0度时,COS0的值为那条X正半轴的0-1的那条线段。
二、相关性质
两个无穷大量之和不一定是无穷大;
有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数);
有限个无穷大量之积一定是无穷大;
另外,一个数列不是无穷大量,不代表它就是有界的(如,数列1,1/2,3,1/3,……)。
伯努利方程的物理意义
当速度增加,压强减少;当速度减小,压强增加。从另一种角度看,伯努利方程说,压力对流体所做的功等于流体动能的改变。给你一个不可压缩的、无粘性流体的流动场,你将可以找出那个流动场的压强场。