分部积分公式口诀
反对幂指三是分部积分的公式口诀。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。当出现两种函数相乘时指数函数必然放到d括号中,再用分部积分法拆开算,而反三角函数不需要动。
∫(0,π/2)[cos(x)]^ndx∫(0,π/2)[sin(x)]^ndx等于(n-1)/n*(n-3)/(n-2)*…*4/5*2/3,n为奇数;等于(n-1)/n*(n-3)/(n-2)*…*3/4*1/2*π/2,n为偶数。
定积分奇偶性公式
在[-a,a]上,若f(x)为奇函数,∫(-a,a)f(x)dx=0;若f(x)为偶函数,∫(-a,a)f(x)dx = 2∫(0,a)f(x)dx。
对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
微积分的意义
微积分学的创立,极大地推动了数学的发展,运用微积分解决了过去很多用初等数学无法解决的问题。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。