不定积分的意义
不定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。
复合函数的积分计算公式是∫udv =uv-∫vdu。复合函数通常是由两个基本初等函数复合而成,相当于将其中一个初等函数(次级函数)镶嵌在另外一个初等函数(主体函数)中。
闭合曲线积分怎么求
闭合曲线积分可以直接运用格林公式和斯托克斯公式进行求解。格林公式是一个数学公式,它描述了平面上沿闭曲线L对坐标的曲线积分与曲线L所围成闭区域D上的二重积分之间的密切关系。一般用于二元函数的全微分求积。
一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记做y=f(g(x))。
估计定积分的值步骤
用定积分的估值定理,定积分介于“被积函数的最大值与积分区间长度的乘积”与“被积函数的最小值与积分区间长度的乘积”之间,而所求函数在所给区间上为增函数(减函数),上限(下限)代入即为被积函数的最大值(最小值)等等。