复合函数积分公式
复合函数的积分计算公式是∫udv =uv-∫vdu。复合函数通常是由两个基本初等函数复合而成,相当于将其中一个初等函数(次级函数)镶嵌在另外一个初等函数(主体函数)中。
变上限积分公式是∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x)。
不定积分的意义
不定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。
积分下限为a,下限是g(x) 那么对这个变上限积分函数求导, 就用g(x)代替f(t)中的t, 再乘以g(x)对x求导,即g'(x) 所以导数为f[g(x)]*g'(x)。注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。
闭合曲线积分怎么求
闭合曲线积分可以直接运用格林公式和斯托克斯公式进行求解。格林公式是一个数学公式,它描述了平面上沿闭曲线L对坐标的曲线积分与曲线L所围成闭区域D上的二重积分之间的密切关系。一般用于二元函数的全微分求积。